Bridges, Walter ORCID: 0000-0002-3967-7620, Franke, Johann and Garnowski, Taylor (2022). Asymptotics for the twisted eta-product and applications to sign changes in partitions. Res. Math. Sci., 9 (4). CHAM: SPRINGER INT PUBL AG. ISSN 2197-9847
Full text not available from this repository.Abstract
We prove asymptotic formulas for the complex coefficients of (zeta q; q)(infinity)(-1), where zeta is a root of unity, and apply our results to determine secondary terms in the asymptotics for p(a, b, n), the number of integer partitions of n with number of parts congruent a modulo b. Our results imply that, as n -> infinity, the difference p(a(1), b, n) - p(a(2), b, n) for a(1) not equal a(2) oscillates like a cosine when renormalized by elementary functions. Moreover, we give asymptotic formulas for arbitrary linear combinations of {p(a, b, n)}(1 <= a <= b).
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-658486 | ||||||||||||||||
DOI: | 10.1007/s40687-022-00355-x | ||||||||||||||||
Journal or Publication Title: | Res. Math. Sci. | ||||||||||||||||
Volume: | 9 | ||||||||||||||||
Number: | 4 | ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Publisher: | SPRINGER INT PUBL AG | ||||||||||||||||
Place of Publication: | CHAM | ||||||||||||||||
ISSN: | 2197-9847 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/65848 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |