Reinecke, David ORCID: 0000-0002-3298-9517, von Spreckelsen, Niklas, Mawrin, Christian, Ion-Margineanu, Adrian, Fuertjes, Gina, Juenger, Stephanie T., Khalid, Florian, Freudiger, Christian W., Timmer, Marco, Ruge, Maximilian, I, Goldbrunner, Roland and Neuschmelting, Volker
ORCID: 0000-0001-7527-6990
(2022).
Novel rapid intraoperative qualitative tumor detection by a residual convolutional neural network using label-free stimulated Raman scattering microscopy.
Acta Neuropathol. Commun., 10 (1).
LONDON:
BMC.
ISSN 2051-5960
Abstract
Determining the presence of tumor in biopsies and the decision-making during resections is often dependent on intraoperative rapid frozen-section histopathology. Recently, stimulated Raman scattering microscopy has been introduced to rapidly generate digital hematoxylin-and-eosin-stained-like images (stimulated Raman histology) for intraoperative analysis. To enable intraoperative prediction of tumor presence, we aimed to develop a new deep residual convolutional neural network in an automated pipeline and tested its validity. In a monocentric prospective clinical study with 94 patients undergoing biopsy, brain or spinal tumor resection, Stimulated Raman histology images of intraoperative tissue samples were obtained using a fiber-laser-based stimulated Raman scattering microscope. A residual network was established and trained in ResNetV50 to predict three classes for each image: (1) tumor, (2) non-tumor, and (3) low-quality. The residual network was validated on images obtained in three small random areas within the tissue samples and were blindly independently reviewed by a neuropathologist as ground truth. 402 images derived from 132 tissue samples were analyzed representing the entire spectrum of neurooncological surgery. The automated workflow took in a mean of 240 s per case, and the residual network correctly classified tumor (305/326), non-tumorous tissue (49/67), and low-quality (6/9) images with an inter-rater agreement of 89.6% (kappa = 0.671). An excellent internal consistency was found among the random areas with 90.2% (C alpha = 0.942) accuracy. In conclusion, the novel stimulated Raman histology-based residual network can reliably detect the microscopic presence of tumor and differentiate from non-tumorous brain tissue in resection and biopsy samples within 4 min and may pave a promising way for an alternative rapid intraoperative histopathological decision-making tool.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-670282 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1186/s40478-022-01411-x | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Acta Neuropathol. Commun. | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume: | 10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Number: | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Publisher: | BMC | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Place of Publication: | LONDON | ||||||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 2051-5960 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/67028 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
![]() |
View Item |