van der Linden, Steven J. A., Kruis, Maarten T., Hartogensis, Oscar K., Moene, Arnold F., Bosveld, Fred C. and van de Wiel, Bas J. H. (2022). Heat Transfer Through Grass: A Diffusive Approach. Bound.-Layer Meteor., 184 (2). S. 251 - 277. DORDRECHT: SPRINGER. ISSN 1573-1472

Full text not available from this repository.

Abstract

Heat transport through short and closed vegetation such as grass is modelled by a simple diffusion process. The grass is treated as a homogeneous 'sponge layer' with uniform thermal diffusivity and conductivity, placed on top of the soil. The temperature and heat-flux dynamics in both vegetation and soil are described using harmonic analysis. All thermal properties have been determined by optimization against observations from the Haarweg climatological station in The Netherlands. Our results indicate that both phase and amplitude of soil temperatures can be accurately reproduced from the vegetation surface temperature. The diffusion approach requires no specific tuning to, for example, the daily cycle, but instead responds to all frequencies present in the input data, including quick changes in cloud cover and day-night transitions. The newly determined heat flux at the atmosphere-vegetation interface is compared with the other components of the surface energy balance at this interface. The budget is well-closed, particularly in the most challenging cases with varying cloud cover and during transition periods. We conclude that the diffusion approach (either implemented analytically or numerically) is a physically consistent alternative to more ad hoc methods, like 'skin resistance' approaches for vegetation and bulk correction methods for upper soil heat storage. However, more work is needed to evaluate parameter variability and robustness under different climatological conditions. From a numerical perspective, the present representation of vegetation allows for both slow and rapid feedbacks between the atmosphere and the surface. As such, it would be interesting to couple the present surface parametrization to turbulence-resolving models, such as large-eddy simulations.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
van der Linden, Steven J. A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kruis, Maarten T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hartogensis, Oscar K.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Moene, Arnold F.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bosveld, Fred C.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
van de Wiel, Bas J. H.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-678087
DOI: 10.1007/s10546-022-00708-7
Journal or Publication Title: Bound.-Layer Meteor.
Volume: 184
Number: 2
Page Range: S. 251 - 277
Date: 2022
Publisher: SPRINGER
Place of Publication: DORDRECHT
ISSN: 1573-1472
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
SURFACE-ENERGY BALANCE; BOUNDARY-LAYER; LAND-SURFACE; THERMAL-CONDUCTIVITY; WATER-CONTENT; MODEL; FLUX; SOILSMultiple languages
Meteorology & Atmospheric SciencesMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/67808

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item