Ashykhmina, Natallia, Chan, Kai Xun, Frerigmann, Henning ORCID: 0000-0002-7067-2721, Van Breusegem, Frank, Kopriva, Stanislav ORCID: 0000-0002-7416-6551, Fluegge, Ulf-Ingo and Gigolashvili, Tamara (2022). Dissecting the Role of SAL1 in Metabolizing the Stress Signaling Molecule 3 '-Phosphoadenosine 5 '-Phosphate in Different Cell Compartments. Front. Mol. Biosci., 8. LAUSANNE: FRONTIERS MEDIA SA. ISSN 2296-889X

Full text not available from this repository.

Abstract

Plants possess the most highly compartmentalized eukaryotic cells. To coordinate their intracellular functions, plastids and the mitochondria are dependent on the flow of information to and from the nuclei, known as retrograde and anterograde signals. One mobile retrograde signaling molecule is the monophosphate 3 & PRIME;-phosphoadenosine 5 & PRIME;-phosphate (PAP), which is mainly produced from 3 & PRIME;-phosphoadenosine 5 & PRIME;-phosphosulfate (PAPS) in the cytosol and regulates the expression of a set of nuclear genes that modulate plant growth in response to biotic and abiotic stresses. The adenosine bisphosphate phosphatase enzyme SAL1 dephosphorylates PAP to AMP in plastids and the mitochondria, but can also rescue sal1 Arabidopsis phenotypes (PAP accumulation, leaf morphology, growth, etc.) when expressed in the cytosol and the nucleus. To understand better the roles of the SAL1 protein in chloroplasts, the mitochondria, nuclei, and the cytosol, we have attempted to complement the sal1 mutant by specifically cargoing the transgenic SAL1 protein to these four cell compartments. Overexpression of SAL1 protein targeted to the nucleus or the mitochondria alone, or co-targeted to chloroplasts and the mitochondria, complemented most aspects of the sal1 phenotypes. Notably, targeting SAL1 to chloroplasts or the cytosol did not effectively rescue the sal1 phenotypes as these transgenic lines accumulated very low levels of SAL1 protein despite overexpressing SAL1 mRNA, suggesting a possibly lower stability of the SAL1 protein in these compartments. The diverse transgenic SAL1 lines exhibited a range of PAP levels. The latter needs to reach certain thresholds in the cell for its impacts on different processes such as leaf growth, regulation of rosette morphology, sulfate homeostasis, and glucosinolate biosynthesis. Collectively, these findings provide an initial platform for further dissection of the role of the SAL1-PAP pathway in different cellular processes under stress conditions.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Ashykhmina, NatalliaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Chan, Kai XunUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Frerigmann, HenningUNSPECIFIEDorcid.org/0000-0002-7067-2721UNSPECIFIED
Van Breusegem, FrankUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kopriva, StanislavUNSPECIFIEDorcid.org/0000-0002-7416-6551UNSPECIFIED
Fluegge, Ulf-IngoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gigolashvili, TamaraUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-679154
DOI: 10.3389/fmolb.2021.763795
Journal or Publication Title: Front. Mol. Biosci.
Volume: 8
Date: 2022
Publisher: FRONTIERS MEDIA SA
Place of Publication: LAUSANNE
ISSN: 2296-889X
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
NEGATIVE REGULATOR; RETROGRADE PATHWAY; ARABIDOPSIS; DROUGHT; ACID; INHIBITION; GENEMultiple languages
Biochemistry & Molecular BiologyMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/67915

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item