Held, Torsten ORCID: 0000-0002-1131-1950 (2018). Universality in the Evolution of Molecular Phenotypes. PhD thesis, Universität zu Köln.

[img]
Preview
PDF
Dissertation_Torsten_Held.pdf

Download (15MB) | Preview

Abstract

With massive growth of biological sequence data and evolutionary experiments the quantitative modeling of evolutionary processes is made possible. These models aim to quantify the degree of conservation and the speed of adaptation in the evolution of biological systems. Evolutionary processes are driven by mutations, selection, and genetic drift. Mutations generate new variants, natural selection favors some of these, and genetic drift is the randomness in their reproduction success. In the early days of population genetics, it was identified that these processes can be described by employing mathematical models from statistical mechanics such as diffusion equations. Recent theoretical studies modeled and solved the dynamics for complex, interacting systems. The complexity arises through evolutionary interaction. On the one hand, mutations interact in their effect on selection. On the other hand, there is competing co-evolution of variants, if recombination cannot break up genomic links. Both problems arise naturally when considering the evolution of molecular phenotypes such as gene expression levels, protein stabilities, or biophysical binding properties. The inheritable information of these phenotypes is constituted by many sites of the DNA sequence. These sites give a large target to new mutational variants and, hence, a number of competing mutations. Since the sites are often confined to small regions of the DNA, beneficial variants in different individuals cannot be recombined through forms of horizontal gene transfer. Selection is further shaped by generically non-linear fitness landscapes, which is the mapping from the phenotypes to biological growth rates. Recent theoretical breakthroughs allowed for the description of the phenotypic dynamics decoupled from plenty of genomic details. These dynamics were solved in evolutionary equilibrium. In this thesis, we take up these models to describe various modes of their evolution, which are scenarios of time-dependent selection and in the co-evolution with other genes. We study for the first time the phenotypic evolution in time-dependent fitness landscapes, so called fitness seascapes, with underlying genomic sites that are genetically linked. We find universal properties that break down the relevant parameters to the stabilizing strength and the driving rate of the fitness seascape. These determine the divergence pattern on the phenotypic scale and the fitness flux, which is a measure for deviations from detailed balance and adaptation, on macro-evolutionary timescales. Therefore, we can read off the stabilizing strength and the fitness flux from the time-dependent phenotypic divergence/diversity ratio. Moreover, we study the impact of short-term constraining phenotypic selection on correlations in their constituting sequences. These correlations arise because sites compensate for the destructive effect from adaptation and genetic drift of other sites. We find that phenotypic evolution generates broad epistasis and correlation matrices across all trait sites, which are of low dimension. This kind of universality allows to read off from sequence correlations alone the number of traits under selection,the genotype–phenotype map, and single site adaptation. The latter can be identified from the asymmetry of time-ordered correlation measures, i.e. deviations from detailed balance. Furthermore, we join the dynamics with recent theories of asexual evolution. These showed universality in the scaling laws of fitness statistics under large mutational influx. With this, we make the step towards systems biology by studying for the first time the asexual co-evolution of biophysical phenotypes on a genome-wide level. We again find universality in the scaling of fitness statistics with the genome size, which decouples from the details of selection. This evolutionary mode induces a so far unknown and dramatic long-term cost of complexity, which can be overcome with small rates of horizontal gene transfer. Comparing this cost to actual biological genome sizes and recombination rates, this offers a new, feasible pathway for the evolution of sex. In all these modes we find so-far unknown laws of universality. These reduce the complexity of the processes on the higher level, e.g. the phenotypic or the overall fitness level and allow the inference of relevant parameters shaping the dynamics or to quantify scalings. Moreover, universalities are strongly related to the predictability of the evolutionary process.

Item Type: Thesis (PhD thesis)
Translated abstract:
AbstractLanguage
Die stark wachsende Anzahl biologischer Sequenzdaten und evolutionärer Experimente ermöglicht die quantitative Modellierung evolutionärer Prozesse. Diese Modelle zielen darauf ab, den Grad der Erhaltung und die Geschwindigkeit der Anpassung in der Evolution biologischer Systeme zu bestimmen. Der evolutionäre Prozess wird durch Mutationen, Selektion und genetischen Drift bestimmt. Mutationen erzeugen neue Variationen, natürliche Selektion bevorzugt einige hiervon, und genetischer Drift ist der Zufall im Reproduktionserfolg. Man hat früh erkannt, dass dieser Prozess durch den Einsatz von mathematischen Modellen aus der statistischen Physik, wie etwa Diffusionsgleichungen, beschrieben werden kann. Neuere theoretische Erkenntnisse erlauben die Modellierung der Dynamik komplexer, interagierender Systeme. Die Komplexität entsteht durch evolutionäre Interaktion. Einerseits interagieren Mutationen in ihren Fitnesseffekten. Andererseits existiert eine konkurrierende Koevolution verschiedener Varianten, wenn Rekombination die genomischen Verbindungen nicht aufbrechen kann. Beide Probleme treten auf, wenn man die Entwicklung molekularer Phänotypen wie Genexpressionslevels, Proteinstabilitäten oder biophysikalische Bindungseigenschaften betrachtet. Die vererbbare Information dieser Phänotypen besteht aus vielen Positionen der DNA-Sequenz. Diese geben ein großes Angriffsziel für neue Mutationsvarianten und damit eine Reihe von konkurrierenden Mutationen. Da sie oftmals auf kleine Bereiche der DNA beschränkt sind, können vorteilhafte Varianten bei verschiedenen Individuen nicht durch horizontalen Gentransfer rekombiniert werden. Die Selektion wird weiterhin generisch durch nichtlineare Fitnesslandschaften geprägt. Diese sind die Abbildung von den Phänotypen auf Wachstumsraten. Neuere theoretische Erkenntnisse erlauben es, diese phänotypische Dynamik losgelöst von vielen genomischen Details zu beschreiben. Hier greifen wir dies auf, um verschiedene Formen phänotypischer Evolution zu betrachten. Wir untersuchen zum ersten Mal die phänotypische Evolution in zeitabhängigen Fitnesslandschaften, so genannten Fitness-‘seascapes’, mit zugrunde liegenden genomischen Sequenzen, die genetisch zusammenhängend sind. Wir finden universelle Eigenschaften, welche die relevanten Parameter auf die Stärke stabilisierender Selektion und die zeitliche Änderungsrate der Fitness-‘seascape’ reduzieren. Diese bestimmen das Divergenzverhalten auf der phänotypischen Skala und den generierten Fitness Fluss, welcher die Abweichung vom detaillierten Gleichgewicht und die Stärke der Adaptation misst. Daher können die stabilisierende Selektion und die Adaptation vom zeitlich aufgelösten Divergenz-Diversitätsverhältnis bestimmt werden. Weiterhin untersuchen wir den Einfluss von stabilisierender phänotypischer Selektion auf die Korrelationen in diesen Sequenzen. Diese Korrelationen entstehen durch die Kompensation schadhafter Mutationen anderer DNA Positionen des Phänotypen, welche durch genetischen Drift oder Adaptation auftreten können. Wir lernen, dass phänotypische Evolution Epistasis und Korrelationengeneriert, die all diese Positionen umfassen. Nichtsdestotrotz sind diese von niedriger Dimension. Diese Universalität ermöglicht es von Sequenzkorrelation die Anzahl selektionsrelevanter Phänotypen, ihre Genotyp-Phänotyp-Abbildungen sowie Adaptation bestimmter Positionen zu erlernen. Letztere kann aus der Asymmetrie der zeitabhängigen Korrelationen identifiziert werden, welche Abweichungen des detaillierten Gleichgewichts messen. Schließlich begeben wir uns in die Systembiologie, indem wir erstmals die asexuelle Koevolution biophysikalischer Phänotypen auf genomweiter Ebene untersuchen. Wir finden universelle Skalierungsgesetze für die genomweite Fitnessstatistik, welche von Details der Selektion entkoppeln. Wir zeigen, dass diese zu dramatischen Kosten in der Genomgröße führen. Beim Vergleich unserer Ergebnisse mit realen biologischen Daten identifizieren wir einen neuen, selektiv praktikablen Weg für die Evolution zur Ausbildung der Geschlechter. In all diesen Modi finden wir Universalitäten. Diese reduzieren die Komplexität der Prozesse auf der höheren Ebene, z. B. der phänotypische Ebene oder der Gesamtfitness. Die Universalitäten erlauben die Inferenz relevanter Parameter, welche die Dynamik von Phänotypen beeinflussen, sowie die Identifizierung von Skalierungsgesetzen. Weiterhin stehen sie im engen Zusammenhang zur Vorhersagbarkeit des evolutionarären Prozesses.German
Creators:
CreatorsEmailORCIDORCID Put Code
Held, TorstenUNSPECIFIEDorcid.org/0000-0002-1131-1950UNSPECIFIED
URN: urn:nbn:de:hbz:38-85500
Date: 2018
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Physics > Institute for Theoretical Physics
Subjects: Natural sciences and mathematics
Physics
Life sciences
Uncontrolled Keywords:
KeywordsLanguage
Phenotypic Evolution; Population Genetics; Adaptive Evolution; Asexual Evolution; Evolution of Sex; BiophysicsEnglish
UNSPECIFIEDGerman
UNSPECIFIEDGerman
UNSPECIFIEDGerman
Date of oral exam: 19 July 2018
Referee:
NameAcademic Title
Lässig, MichaelProf. Dr.
Berg, JohannesProf. Dr.
Frey, ErwinProf. Dr.
References: [1] Torsten Held, Armita Nourmohammad, and Michael Lässig. Adaptive evolution of mo lecular phenotypes. J Stat Mech: Theory Exp, 2014(9):P09029, 2014. [2] Armita Nourmohammad, Torsten Held, and Michael Lässig. Universality and predictabil ity in molecular quantitative genetics. Curr Opin Genet Dev, 23(6):684 - 693, 2013. Equal contributions by AN and TH. [3] Armita Nourmohammad, Joachim Rambeau, Torsten Held, Viera Kovacova, Johannes Berg, and Michael Lässig. Adaptive evolution of gene expression in drosophila. Cell reports, 20(6):1385-1395, 2017. [4] Torsten Held, Daniel Klemmer, and Michael Lässig. Survival of the simplest: the cost of complexity in microbial evolution. arXiv:1803.08473, 2018. Equal contributions by TH and DK. [5] M Kimura. Diffusion models in population genetics. J Appl Probab, 1(2):177-232, 1964. [6] Andrew L Ferguson, Jaclyn K Mann, Saleha Omarjee, Thumbi Ndungú, Bruce D Walker, and Arup K Chakraborty. Translating hiv sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity, 38(3):606-617, 03 2013. [7] Marta Luksza and Michael Lässig. A predictive fitness model for influenza. Nature, 507(7490):57, 2014. [8] Richard A. Neher, Trevor Bedford, Rodney S. Daniels, Colin A. Russell, and Boris I. Shraiman. Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proc Natl Acad Sci U S A, 113(12):E1701-1709, mar 2016. [9] Armita Nourmohammad, Jakub Otwinowski, and Joshua B Plotkin. Host-pathogen coe volution and the emergence of broadly neutralizing antibodies in chronic infections. PLos Genet, 12(7):e1006171, July 2016. [10] Michael Lässig, Ville Mustonen, and Aleksandra M. Walczak. Predicting evolution. Nature 93 [11] Dylan H. Morris, Katelyn M. Gostic, Simone Pompei, Trevor Bedford, Marta Luksza, Richard A. Neher, Bryan T. Grenfell, Michael Lässig, and John W. McCauley. Predictive modeling of influenza shows the promise of applied evolutionary biology. Trends Microbiol, 2017. [12] Marta Luksza, Nadeem Riaz, Vladimir Makarov, Vinod P. Balachandran, Matthew D. Hellmann, Alexander Solovyov, Naiyer A. Rizvi, Taha Merghoub, Arnold J. Levine, Timothy A. Chan, Jedd D. Wolchok, and Benjamin D. Greenbaum. A neoantigen fit ness model predicts tumour response to checkpoint blockade immunotherapy. Nature, 551:517 EP -, 11 2017. [13] Chikara Furusawa, Takaaki Horinouchi, and Tomoya Maeda. Toward prediction and con trol of antibiotic-resistance evolution. Curr Opin Biotechnol, 54:45 - 49, 2018. Analytical Biotechnology. [14] Andrej Fischer, Ignacio Vázquez-Garcı́a, and Ville Mustonen. The value of monitoring to control evolving populations. Proc Natl Acad Sci U S A, 112(4):1007-1012, 2015. [15] U Gerland and T Hwa. On the selection and evolution of regulatory DNA motifs. J Mol Evol, 55(4):386-400, 2002. [16] Johannes Berg, Stana Willmann, and Michael Lässig. Adaptive evolution of transcription factor binding sites. BMC Evol Biol, 4(1):42, 2004. [17] V Mustonen, J Kinney, Curtis G. Jr Callan, and M Lässig. Energy-dependent fitness: A quantitative model for the evolution of yeast transcription factor binding sites. Proc Natl Acad Sci U S A, 105(34):12376-12381, 2008. [18] F S Gnesotto, F Mura, J Gladrow, and C P Broedersz. Broken detailed balance and non-equilibrium dynamics in living systems: a review. Rep Prog Phys, 81(6):066601, 2018. [19] Ville Mustonen and Michael Lässig. Adaptations to fluctuating selection in Drosophila. Proc Natl Acad Sci U S A, 104:2277-82, 2007. [20] João Barroso-Batista, Ana Sousa, Marta Lourenço, Marie-Louise Bergman, Daniel Sobral, Jocelyne Demengeot, Karina B. Xavier, and Isabel Gordo. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLos Genet, 10(3):e1004182, 03 2014. [21] Natalja Strelkowa and Michael Lässig. Clonal interference in the evolution of influenza. Genetics, 192(2):671-682, 2012. [22] Olivier Tenaillon, Alejandra Rodrı́guez-Verdugo, Rebecca L Gaut, Pamela McDonald, Albert F Bennett, Anthony D Long, and Brandon S Gaut. The molecular diversity of adaptive convergence. Science, 335(6067):457-461, January 2012. [23] Erdal Toprak, Adrian Veres, Jean-Baptiste Michel, Remy Chait, Daniel L Hartl, and Roy Kishony. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet, 44(1):101-105, January 2012. [24] Guy Sella and Aaron E Hirsch. The application of statistical physics to evolutionary biology. Proc Natl Acad Sci U S A, 102(27):9541-9546, 2005. [25] N H Barton and J B Coe. On the application of statistical physics to evolutionary biology. J Theor Biol, 259(2):317-324, July 2009. [26] Daniel Fisher, Michael Lässig, and Boris Shraiman. Evolutionary dynamics and statistical physics. J Stat Mech Theor Exp, 2013(01):N01001, 2013. [27] Arup K Chakraborty and Andrej Kosmrlj. Statistical mechanical concepts in immunology. Annu Rev Phys Chem, 61:283-303, 2010. [28] Harold P de Vladar and Nick H Barton. The contribution of statistical physics to evolu tionary biology. Trends Ecol Evol, 26(8):424-432, 2011. [29] Simona Cocco, Christoph Feinauer, Matteo Figliuzzi, Rémi Monasson, and Martin Weigt. Inverse statistical physics of protein sequences: a key issues review. Rep Prog Phys, 81(3):032601, 2018. [30] Richard A Neher, Colin A Russell, and Boris I Shraiman. Predicting evolution from the shape of genealogical trees. eLife, 3:e03568, 2014. [31] RA Fisher. The genetical theory of natural selection. Oxford University Press, USA, 1st edition, 1930. [32] S Wright. Evolution in mendelian populations. Genetics, 16(2):97-159, 1931. [33] P. A. P. Moran. The survival of a mutant gene under selection. J Austral Math Soc, 1(1):121126, 1959. [34] M Kimura. On the probability of fixation of mutant genes in a population. Genetics, 47(6):713, 1962. [35] J. A. G. M. de Visser, Clifford W. Zeyl, Philip J. Gerrish, Jeffrey L. Blanchard, and Richard E. Lenski. Diminishing returns from mutation supply rate in asexual populations. Science, 283(5400):404-406, 1999. [36] Lı́lia Perfeito, Lisete Fernandes, Catarina Mota, and Isabel Gordo. Adaptive mutations in bacteria: High rate and small effects. Science, 317(5839):813-815, 2007. [37] Tim F Cooper. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol, 5(9):e225, 08 2007. [38] Andrea J. Betancourt, John J. Welch, and Brian Charlesworth. Reduced effectiveness of selection caused by a lack of recombination. Curr Biol, 19(8):655-660, April 2009. 95 [39] Michael J. Wiser, Noah Ribeck, and Richard E. Lenski. Long-term dynamics of adaptation in asexual populations. Science, 342(6164):1364-1367, 2013. [40] Michael J. McDonald, Daniel P. Rice, and Michael M. Desai. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature, 531:233-236, 02 2016. [41] Alejandro Couce, Larissa Viraphong Caudwell, Christoph Feinauer, Thomas Hindré, JeanPaul Feugeas, Martin Weigt, Richard E. Lenski, Dominique Schneider, and Olivier Tenail lon. Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria. Proc Natl Acad Sci U S A, 114(43):E9026-E9035, 2017. [42] S. Schiffels, M. Lässig, and V. Mustonen. Rate and cost of adaptation in the Drosophila Genome. ArXiv e-prints, September 2014. [43] S Wright. The analysis of variance and the correlations between relatives with respect to deviations from an optimum. J Genet, 30(2):243-256, 1935. [44] M G Blumer. The genetic variability of polygenic characters under optimizing selection, mutation and drift. Genet Res, 19(1):17-25, 1972. [45] Russell Lande. Natural selection and random genetic drift in phenotypic evolution. Evol ution, 30(2):314-334, 1976. [46] Nick H Barton. The maintenance of polygenic variation through a balance between muta tion and stabilizing selection. Genet Res, 47(3):209-216, 1986. [47] N H Barton and M Turelli. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet, 23:337-370, 1989. [48] Douglas Scott Falconer. Introduction to quantitative genetics. Halsted Press, 1989. [49] S H Rice. A geometric model for the evolution of development. J Theor Biol, 1990. [50] D L Hartl and C H Taubes. Compensatory nearly neutral mutations: selection without adaptation. J Theor Biol, 182(3):303-309, February 1996. [51] Michael Lynch and Bruce Walsh. Genetics and analysis of quantitative traits. Sinauer Associates Inc, 1998. [52] J M Comeron and M Kreitman. Population, evolutionary and genomic consequences of interference selection. Genetics, 161(1):389-410, 2002. [53] Armita Nourmohammad, Stephan Schiffels, and Michael Lässig. Evolution of molecular phenotypes under stabilizing selection. J Stat Mech Theor Exp, 2013(01):P01012, January 2013. [54] Daniel Klemmer and Michael Lässig. Quantitative traits in adaptively evolving popula tions. In preparation. [55] R. Phillips, J. Kondev, J. Theriot, and N. Orme. Physical Biology of the Cell. Garland Science, 2013. [56] Jacque Monod, Jeffries Wyman, and Jean-Pierre Changeux. On the nature of allosteric transitions: A plausible model. J Mol Biol, 12(1):88 - 118, 1965. [57] Michael Manhart and Alexandre V Morozov. Protein folding and binding can emerge as evolutionary spandrels through structural coupling. Proc Natl Acad Sci U S A, 112(6):1797-1802, 2015. [58] Nicolas Chéron, Adrian W.R. Serohijos, Jeong-Mo Choi, and Eugene I. Shakhnovich. Evol utionary dynamics of viral escape under antibodies stress: A biophysical model. Protein Sci, 25(7):1332-1340, 2016. [59] Ville Mustonen and Michael Lässig. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet, 25(3):111-119, March 2009. [60] V. Mustonen and M. Lässig. Fitness flux and ubiquity of adaptive evolution. Proc Natl Acad Sci U S A, 107:4248-53, 2010. [61] H J Muller. The relation of recombination to mutational advance. Mutat Res, 106:2-9, 1964. [62] Manfred Eigen. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58(10):465-523, 1971. [63] I Gordo and B Charlesworth. The degeneration of asexual haploid populations and the speed of Muller's ratchet. Genetics, 154(3):1379-1387, 03 2000. [64] Igor M. Rouzine, Éric Brunet, and Claus O. Wilke. The traveling-wave approach to asexual evolution: Muller's ratchet and speed of adaptation. Theor Popul Biol, 73(1):24 - 46, 2008. [65] Philip J. Gerrish and Richard E. Lenski. The fate of competing beneficial mutations in an asexual population. Genetica, 102:127-144, Mar 1998. [66] Michael M. Desai and Daniel S. Fisher. Beneficial mutation-selection balance and the effect of linkage on positive selection. Genetics, 176(3):1759-1798, 2007. [67] Oskar Hallatschek. The noisy edge of traveling waves. Proc Natl Acad Sci U S A, 108(5):1783-1787, 2011. [68] Stephan Schiffels, Gergely J Szöllősi, Ville Mustonen, and Michael Lässig. Emergent neutrality in adaptive asexual evolution. Genetics, 189(4):1361-1375, 2011. [69] Benjamin H. Good, Igor M. Rouzine, Daniel J. Balick, Oskar Hallatschek, and Michael M. Desai. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc Natl Acad Sci U S A, 109(13):4950-4955, 2012. 97 [70] Richard A. Neher and Oskar Hallatschek. Genealogies of rapidly adapting populations. Proc Natl Acad Sci U S A, 110(2):437-442, 2013. [71] Richard A. Neher, Taylor A. Kessinger, and Boris I. Shraiman. Coalescence and genetic diversity in sexual populations under selection. Proc Natl Acad Sci U S A, 110(39):15836- 15841, 2013. [72] Elisheva Cohen, David A. Kessler, and Herbert Levine. Front propagation up a reaction rate gradient. Phys. Rev. E, 72:066126, Dec 2005. [73] Sidhartha Goyal, Daniel J. Balick, Elizabeth R. Jerison, Richard A. Neher, Boris I. Shrai man, and Michael M. Desai. Dynamic mutation-selection balance as an evolutionary attractor. Genetics, 191(4):1309-1319, 2012. [74] Torsten Held, Daniel Klemmer, Fernanda Pinheiro, Simone Pompei, and Michael Lässig. Adaptive genome evolution by punctuated fitness waves. Equal contributions by TH, DK, FP, and SP. In preparation. [75] L Kadanoff. Scaling and universality in statistical physics. PhyA., 163:1-14, 1990. [76] Martin Weigt, Robert A. White, Hendrik Szurmant, James A. Hoch, and Terence Hwa. Identification of direct residue contacts in proteinprotein interaction by message passing. Proc Natl Acad Sci U S A, 106(1):67-72, 2009. [77] Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S. Marks, Chris Sander, Riccardo Zecchina, José N. Onuchic, Terence Hwa, and Martin Weigt. Direct coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A, 108(49):E1293-E1301, 2011. [78] Debora S. Marks, Lucy J. Colwell, Robert Sheridan, Thomas A. Hopf, Andrea Pagnani, Riccardo Zecchina, and Chris Sander. Protein 3d structure computed from evolutionary sequence variation. PLoS One, 6(12):1-20, 12 2011. [79] Hendrik Szurmant and Martin Weigt. Inter-residue, inter-protein and inter-family coe volution: bridging the scales. Curr Opin Struct Biol, 50:26 - 32, 2018. Carbohydrates Sequences and topology. [80] Steve W. Lockless and Rama Ranganathan. Evolutionarily conserved pathways of energetic connectivity in protein families. Science, 286(5438):295-299, 1999. [81] Najeeb Halabi, Olivier Rivoire, Stanislas Leibler, and Rama Ranganathan. Protein sectors: Evolutionary units of three-dimensional structure. Cell, 138(4):774 - 786, 2009. [82] Robert G Smock, Olivier Rivoire, William P Russ, Joanna F Swain, Stanislas Leibler, Rama Ranganathan, and Lila M Gierasch. An interdomain sector mediating allostery in hsp70 molecular chaperones. Mol Syst Biol, 6:414-414, 2010. [83] John P Barton, Mehran Kardar, and Arup K Chakraborty. Scaling laws describe memories of host-pathogen riposte in the hiv population. Proc Natl Acad Sci U S A, 112(7):1965- 1970, 02 2015. [84] Yue Zhao and Gary D Stormo. Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nat Biotechnol, 29(6):480, 2011. [85] H P de Vladar and N H Barton. The statistical mechanics of a polygenic character under stabilizing selection, mutation and drift. J R Soc Interface, 8(58):720-739, March 2011. [86] W.J. Ewens. Mathematical Population Genetics: I. Theoretical Introduction. Interdiscip linary Applied Mathematics. Springer, 2004. [87] Michael Lässig. From biophysics to evolutionary genetics: statistical aspects of gene reg ulation. BMC Bioinf, 8(Suppl 6):S7, September 2007. [88] R A Neher and B I Shraiman. Competition between recombination and epistasis can cause a transition from allele to genotype selection. Proc Natl Acad Sci U S A, 106(16):6866- 6871, April 2009. [89] Boris Shraiman, Richard A Neher, Marija Vucelja, and Marc Mézard. Emergence of clones in sexual populations. J Stat Mech, P01008, 2013. [90] Sungmin Hwang, Su-Chan Park, and Joachim Krug. Genotypic complexity of fisher's geometric model. Genetics, 206(2):1049-1079, 2017. [91] Richard A. Neher. Genetic draft, selective interference, and population genetics of rapid adaptation. Annu Rev Ecol Evol Syst, 44(1):195-215, 2013. [92] Daniel P. Rice, Benjamin H. Good, and Michael M. Desai. The evolutionarily stable distribution of fitness effects. Genetics, 200(1):321-329, 2015. [93] Warren J Ewens. Mathematical Population Genetics. Springer, New York, 2004. [94] Thomas F. Hansen. Stabilizing selection and the comparative analysis of adaptation. Evolution, 51(5):1341-1351, 1997. [95] Marguerite A Butler and Aaron A King. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat, 164(6):683-695, 2004. [96] T Bedford and D L Hartl. Optimization of gene expression by natural selection. Proc Natl Acad Sci U S A, 106(4):1133-1138, January 2009. [97] Jeremy M. Beaulieu, Dwueng-Chwuan Jhwueng, Carl Boettiger, and Brian C. OMeara. Modeling stabilizing selection: Expanding the Ornstein-Uhlenbeck model of adaptive evol ution. Evolution, 66(8):2369-2383, 2012. [98] Harold P. de Vladar and Nick H Barton. Stability and response of polygenic traits to stabilizing selection and mutation. Genetics, 197(2):749-767, 2014. 99 [99] Peiqiu Chen and Eugene I. Shakhnovich. Lethal mutagenesis in viruses and bacteria. Genetics, 183(2):639-650, 2009. [100] Richard A. Goldstein. The evolution and evolutionary consequences of marginal thermo stability in proteins. Proteins: Struct , Funct , Bioinf, 79(5):1396-1407, 2011. [101] Adrian W.R. Serohijos and Eugene I. Shakhnovich. Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary popu lation genetics. Curr Opin Struct Biol, 26(0):84-91, 2014. [102] Peter B. Chi and David A. Liberles. Selection on protein structure, interaction, and sequence. Protein Sci, 25(7):1168-1178, 2016. [103] Jakub Otwinowski. Inferring protein stability and function from a high-throughput assay. arXiv preprint, 1802.08744, 2018. [104] M Hochstrasser. Ubiquitin-dependent protein degradation. Annu Rev Genet, 30:405-439, 1996. [105] M Kopp and J Hermisson. The genetic basis of phenotypic adaptation ii: the distribution of adaptive substitutions in the moving optimum model. Genetics, 183:1453-76, 2009. [106] Ville Mustonen and Michael Lässig. Molecular evolution under fitness fluctuations. Phys Rev Lett, 100(10):108101, March 2008. [107] Ville Mustonen and Michael Lässig. Evolutionary population genetics of promoters: pre dicting binding sites and functional phylogenies. Proc Natl Acad Sci U S A, 102(44):15936- 15941, November 2005. [108] N H Barton and H P de Vladar. Statistical mechanics and the evolution of polygenic quantitative traits. Genetics, 181(3):997-1011, 2009. [109] Richard A. Neher and Boris I. Shraiman. Statistical genetics and evolution of quantitative traits. Rev Mod Phys, 83:1283-1300, Nov 2011. [110] Frank Poelwijk, Philip Heyning, Marjon de Vos, Daniel Kiviet, and Sander Tans. Optimal ity and evolution of transcriptionally regulated gene expression. BMC Syst Biol, 5(1):128, 2011. [111] C. Scott Wylie and Eugene I. Shakhnovich. A biophysical protein folding model accounts for most mutational fitness effects in viruses. Proc Natl Acad Sci U S A, 108(24):9916-9921, 2011. [112] Rutger Hermsen, J. Barrett Deris, and Terence Hwa. On the rapidity of antibiotic resist ance evolution facilitated by a concentration gradient. Proc Natl Acad Sci U S A, 2012. [113] M. Lässig. Dynamical anomalies and intermittency in burgers turbulence. Phys Rev Lett, 84(12):2618-21, 2000. [114] Michael Lynch and Allan Force. The probability of duplicate gene preservation by sub functionalization. Genetics, 154(1):459-473, 2000. [115] Olivier Rivoire and Stanislas Leibler. A model for the generation and transmission of variations in evolution. Proc Natl Acad Sci U S A, 111(19):E1940-E1949, 2014. [116] M Möhle. Forward and backward diffusion approximations for haploid exchangeable pop ulation models. Stoch Proc Appl, 95:133-149, 2001. [117] Ranajit Chakraborty and Masatoshi Nei. Genetic differentiation of quantitative characters between populations or species: I. mutation and random genetic drift. Genet Res, 39:303- 314, 6 1982. [118] Michael Lynch and William G. Hill. Phenotypic evolution by neutral mutation. Evolution, 40(5):915-935, 1986. [119] J F Crow. Some possibilities for measuring selection intensities in man. Hum Biol, 30(1):1- 13, 1958. [120] J F Crow and M Kimura. Evolution in sexual and asexual populations. Am Nat, 99(909):439-450, 1965. [121] J B S Haldane. The cost of natural selection. J Genet, 55(3):511-524, 1957. [122] H J Muller. Our load of mutations. Am J Hum Genet, 2(2):111-176, 1950. [123] D. L. Hartl and C. H. Taubes. Towards a theory of evolutionary adaptation. Genetica, 102-103:525-533, 1998. [124] A Poon and S. P. Otto. Compensating for our load of mutations: freezing the meltdown of small populations. Evolution, 54:1467-1479, 2000. [125] Olivier Tenaillon, Olin K Silander, Jean-Philippe Uzan, and Lin Chao. Quantifying or ganismal complexity using a population genetic approach. PLoS One, 2(2):e217, 2007. [126] V Y Chernyak, M Chertkov, and C Jarzynski. Path-integral analysis of fluctuation theor ems for general langevin processes. J Stat Mech, 8:080001, 2006. [127] Philipp Khaitovich, Ines Hellmann, Wolfgang Enard, Katja Nowick, Marcus Leinweber, Henriette Franz, Gunter Weiss, Michael Lachmann, and Svante Pääbo. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science, 309(5742):1850-1854, 2005. [128] Yoav Gilad, Alicia Oshlack, Gordon K Smyth, Terence P Speed, and Kevin P White. Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature, 440(7081):242, 2006. [129] Hunter B Fraser. Genome-wide approaches to the study of adaptive gene expression evolution. Bioessays, 33(6):469-477, April 2011. 101 [130] J H McDonald and M Kreitman. Adaptive protein evolution at the Adh locus in Droso phila. Nature, 351(6328):652-654, 1991. [131] Nick G. C. Smith and Adam Eyre-Walker. Adaptive protein evolution in drosophila. Nature, 415:1022-1024, 02 2002. [132] Ellen M. Leffler, Kevin Bullaughey, Daniel R. Matute, Wynn K. Meyer, Laure Ségurel, Aarti Venkat, Peter Andolfatto, and Molly Przeworski. Revisiting an old riddle: What determines genetic diversity levels within species? PLoS Biol, 10(9):1-9, 09 2012. [133] Guy Sella, Dmitri A Petrov, Molly Przeworski, and Peter Andolfatto. Pervasive natural selection in the drosophila genome? PLos Genet, 5(6):e1000495, 2009. [134] Ivan G. Szendro, Jasper Franke, J. Arjan G. M. de Visser, and Joachim Krug. Predictab ility of evolution depends nonmonotonically on population size. Proc Natl Acad Sci U S A, 110(2):571-576, 2013. [135] Stuart A. Kauffman and Edward D. Weinberger. The nk model of rugged fitness landscapes and its application to maturation of the immune response. J Theor Biol, 141(2):211 - 245, 1989. [136] Stefan Nowak and Joachim Krug. Analysis of adaptive walks on nk fitness landscapes with different interaction schemes. J Stat Mech Theor Exp, 2015(6):P06014, 2015. [137] J. F. C. Kingman. A simple model for the balance between selection and mutation. J Appl Probab, 15(1):112, 1978. [138] Simone Pompei, Torsten Held, and Michael Lässig. Adaptive traits of the human influenza. In preparation. [139] H. Chau Nguyen, Riccardo Zecchina, and Johannes Berg. Inverse statistical problems: from the inverse ising problem to data science. Adv Phys, 66(3):197-261, 2017. [140] Günter P. Wagner and Jianzhi Zhang. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet, 12(3):204-213, 03 2011. [141] Richard N. McLaughlin Jr, Frank J. Poelwijk, Arjun Raman, Walraj S. Gosal, and Rama Ranganathan. The spatial architecture of protein function and adaptation. Nature, 491(7422):138-142, 11 2012. [142] Björn F. Koel, David F. Burke, Theo M. Bestebroer, Stefan van der Vliet, Gerben C. M. Zondag, Gaby Vervaet, Eugene Skepner, Nicola S. Lewis, Monique I. J. Spronken, Colin A. Russell, Mikhail Y. Eropkin, Aeron C. Hurt, Ian G. Barr, Jan C. de Jong, Guus F. Rimmelzwaan, Albert D. M. E. Osterhaus, Ron A. M. Fouchier, and Derek J. Smith. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 342(6161):976-979, 2013. [143] Sergey Kryazhimskiy, Jonathan Dushoff, Georgii A. Bazykin, and Joshua B. Plotkin. Pre valence of epistasis in the evolution of influenza a surface proteins. PLos Genet, 7(2):1-11, 02 2011. [144] Alexey D. Neverov, Sergey Kryazhimskiy, Joshua B. Plotkin, and Georgii A. Bazykin. Coordinated evolution of influenza a surface proteins. PLos Genet, 11(8):1-26, 08 2015. [145] H. J. Muller. Some genetic aspects of sex. Am Nat, 66(703):118-138, 1932. [146] Joseph Felsenstein. The evolutionary advantage of recombination. Genetics, 78(2):737- 756, March 1974. [147] A S Kondrashov. Classification of hypotheses on the advantage of amphimixis. J Hered, 84(5):372-387, 1993. [148] John H. Gillespie. Genetic drift in an infinite population: The pseudohitchhiking model. Genetics, 155(2):909-919, 2000. [149] Benjamin H. Good, Aleksandra M. Walczak, Richard A. Neher, and Michael M. Desai. Genetic diversity in the interference selection limit. PLos Genet, 10(3):e1004222, 03 2014. [150] Matthew Scott, Carl W. Gunderson, Eduard M. Mateescu, Zhongge Zhang, and Terence Hwa. Interdependence of cell growth and gene expression: Origins and consequences. Science, 330(6007):1099-1102, 2010. [151] Michael Lynch and Georgi K. Marinov. The bioenergetic costs of a gene. Proc Natl Acad Sci U S A, 112(51):15690-15695, 2015. [152] Daniel B. Weissman and Nicholas H. Barton. Limits to the rate of adaptive substitution in sexual populations. PLos Genet, 8(6):1-18, 06 2012. [153] Josep M. Comeron, Ramesh Ratnappan, and Samuel Bailin. The many landscapes of recombination in Drosophila melanogaster. PLos Genet, 8(10):1-21, 10 2012. [154] S. Schiffels, V. Mustonen, and M. Lässig. The asexual genome of Drosophila. ArXiv e-prints, November 2017. [155] Nobuhiko Tokuriki, Francois Stricher, Joost Schymkowitz, Luis Serrano, and Dan S. Tawfik. The stability effects of protein mutations appear to be universally distributed. J Mol Biol, 369(5):1318-1332, 2007. [156] Konstantin B. Zeldovich, Peiqiu Chen, and Eugene I. Shakhnovich. Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc Natl Acad Sci U S A, 104(41):16152-16157, 2007. [157] Justin B Kinney, Anand Murugan, Curtis G Callan, and Edward C Cox. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory se quence. Proc Natl Acad Sci U S A, 107(20):9158-9163, 2010. 103 [158] Murat Tuğrul, Tiago Paixão, Nicholas H. Barton, and Gašper Tkačik. Dynamics of tran scription factor binding site evolution. PLos Genet, 11(11):1-28, 11 2015. [159] Guilhem Faure and Eugene V Koonin. Universal distribution of mutational effects on pro tein stability, uncoupling of protein robustness from sequence evolution and distinct evol utionary modes of prokaryotic and eukaryotic proteins. Phys Biol, 12(3):035001-035001, 05 2015. [160] Crispin Gardiner. Handbook of Stochastic methods: for physics, chemistry and the natural sciences. Springer, 3rd edition, April 2004. [161] Michael Lynch, Way Sung, Krystalynne Morris, Nicole Coffey, Christian R. Landry, Erik B Dopman, W Joseph Dickinson, Kazufusa Okamoto, Shilpa Kulkarni, Daniel L Hartl, and W Kelley Thomas. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A, 105(27):9272-9277, 2008. [162] Peter D. Keightley, Rob W. Ness, Daniel L. Halligan, and Penelope R. Haddrill. Estimation of the spontaneous mutation rate per nucleotide site in a drosophila melanogaster full-sib family. Genetics, 196(1):313-320, 2014. [163] Stephan Ossowski, Korbinian Schneeberger, José Ignacio Lucas-Lledó, Norman Warth mann, Richard M. Clark, Ruth G Shaw, Detlef Weigel, and Michael Lynch. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 327(5961):92-94, 2009. [164] Paul M. Harrison, Duncan Milburn, Zhaolei Zhang, Paul Bertone, and Mark Gerstein. Identification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids Res, 31(3):1033-1037, 2003. [165] Evelyne Derelle, Conchita Ferraz, Stephane Rombauts, Pierre Rouzé, Alexandra Z Worden, Steven Robbens, Frédéric Partensky, Sven Degroeve, Sophie Echeynié, Richard Cooke, Yvan Saeys, Jan Wuyts, Kamel Jabbari, Chris Bowler, Olivier Panaud, Benot Piégu, Steven G Ball, Jean-Philippe Ral, François-Yves Bouget, Gwenael Piganeau, Bern ard De Baets, André Picard, Michel Delseny, Jacques Demaille, Yves Van de Peer, and Hervé Moreau. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A, 103(31):11647-11652, January 2006. [166] Jian Feng, Daniel Q. Naiman, and Bret Cooper. Coding DNA repeated throughout in tergenic regions of the Arabidopsis thaliana genome: evolutionary footprints of RNA silencing. Mol Biosyst, 5:1679-1687, 2009. [167] Douglas M Ruderfer, Stephen C Pratt, Hannah S Seidel, and Leonid Kruglyak. Population genomic analysis of outcrossing and recombination in yeast. Nat Genet, 38(9):1077-1081, September 2006. [168] Anna-Sophie Fiston-Lavier, Nadia D. Singh, Mikhail Lipatov, and Dmitri A. Petrov. Drosophila melanogaster recombination rate calculator. Gene, 463(12):18 - 20, 2010. [169] P A Salomé, K Bomblies, J Fitz, R A E Laitinen, N Warthmann, L Yant, and D Wei gel. The recombination landscape in Arabidopsis thaliana F2 populations. Heredity, 108(4):447-455, April 2012.
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/8550

Downloads

Downloads per month over past year

Export

Actions (login required)

View Item View Item