Apke, Alexander and Schrader, Rainer (2015). On the non-unit count of interval graphs. Discrete Applied Mathematics, 195. pp. 2-7. Elsevier.
|
PDF
nonunitcount_revised.pdf - Draft Version Download (319kB) | Preview |
Abstract
We introduce the non-unit count of an interval graph as the minimum number of intervals in an interval representation whose lengths deviate from one. We characterize a variant of the non-unit count (where all interval lengths are required to be at least one) and graphs with non-unit count 1.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-550555 | ||||||||||||
Journal or Publication Title: | Discrete Applied Mathematics | ||||||||||||
Volume: | 195 | ||||||||||||
Page Range: | pp. 2-7 | ||||||||||||
Date: | November 2015 | ||||||||||||
Publisher: | Elsevier | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Institute of Computer Science | ||||||||||||
Subjects: | Data processing Computer science | ||||||||||||
Refereed: | No | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/55055 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |