Coman, Dan, Marinescu, George ORCID: 0000-0001-6539-7860 and Nguyên, Viêt-Anh (2025). Restricted spaces of holomorphic sections vanishing along subvarieties. Mathematische Zeitschrift, 310 (1). Springer Nature. ISSN 0025-5874

[thumbnail of s00209-025-03706-w.pdf] PDF
s00209-025-03706-w.pdf
Bereitstellung unter der CC-Lizenz: Creative Commons Attribution.

Download (472kB)
Identification Number:10.1007/s00209-025-03706-w

Abstract

[Artikel-Nr. 9] Let X be a compact normal complex space of dimension n and L be a holomorphic line bundle on X. Suppose that Σ = ( Σ 1 , … , Σ ℓ ) is an ℓ -tuple of distinct irreducible proper analytic subsets of X , τ = ( τ 1 , … , τ ℓ ) is an ℓ -tuple of positive real numbers, and let H 0 0 ( X , L p ) be the space of holomorphic sections of L p : = L ⊗ p that vanish to order at least τ j p along Σ j , 1 ≤ j ≤ ℓ. If Y ⊂ X is an irreducible analytic subset of dimension m , we consider the space H 0 0 (X | Y, L p) of holomorphic sections of L p | Y that extend to global holomorphic sections in H 0 0 ( X , L p). Assuming that the triplet (L, Σ, τ) is big in the sense that dim H 0 0 (X, L p) ∼ p n , we give a general condition on Y to ensure that dim H 0 0 (X | Y, L p) ∼ p m. When L is endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces H 0 0 (X | Y, L p) converge to a certain equilibrium current on Y. We apply this to the study of the equidistribution of zeros in Y of random holomorphic sections in H 0 0 ( X | Y, L p) as p → ∞.

Item Type: Article
Creators:
Creators
Email
ORCID
ORCID Put Code
Coman, Dan
UNSPECIFIED
UNSPECIFIED
UNSPECIFIED
Marinescu, George
UNSPECIFIED
UNSPECIFIED
Nguyên, Viêt-Anh
UNSPECIFIED
UNSPECIFIED
UNSPECIFIED
URN: urn:nbn:de:hbz:38-797042
Identification Number: 10.1007/s00209-025-03706-w
Journal or Publication Title: Mathematische Zeitschrift
Volume: 310
Number: 1
Date: 17 May 2025
Publisher: Springer Nature
ISSN: 0025-5874
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute
Subjects: Mathematics
['eprint_fieldname_oa_funders' not defined]: Publikationsfonds UzK
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/79704

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item