References: |
[1] J.U. Brackbill, D.C. Barnes, The effect of nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys. 35 (3) (1980) 426-430, https://doi.org/10.1016/0021-9991(80)90079-0.
[2] D. Derigs, A.R. Winters, G.J. Gassner, S. Walch, A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure, J. Comput. Phys. 317 (2016) 223-256, https://doi.org/10.1016/j.jcp.2016.04.048.
[3] A.R. Winters, G.J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys. 304 (2016) 72-108, https://doi.org/10.1016/j.jcp.2015.09.055.
[4] U.S. Fjordholm, S. Mishra, E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys. 230 (14) (2011) 5587-5609, https://doi.org/10.1016/j.jcp.2011.03.042.
[5] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput. 49 (179) (1987) 91-103, https:// doi.org/10.2307/2008251.
[6] S. Godunov, Symmetric form of the equations of magnetohydrodynamics, Numer. Methods Mech. Contin. Medium 1 (1972) 26-34.
[7] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys. 154 (2) (1999) 284-309, https://doi.org/10.1006/jcph.1999.6299.
[8] P.A.M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc., Math. Phys. Eng. Sci. 133 (821) (1931) 60-72, https://doi.org/10.1098/ rspa.1931.0130.
[9] J.D. Jackson, C. Witte, K. Muller, Klassische Elektrodynamik, (Überarbeitete Auflage) (German Edition), 4th edition, Walter de Gruyter, 2006.
[10] F. Moulin, Magnetic monopoles and Lorentz force, Nuovo Cimento B 116 (2001) 869, arXiv:math-ph/0203043.
[11] G.I. Ogilvie, Lecture notes: astrophysical fluid dynamics, ArXiv e-prints arXiv:1604.03835.
[12] T.J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in: D. Kröner, M. Ohlberger, C. Rohde (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, in: Lect. Notes Comput. Sci. Eng., vol. 5, Springer Berlin Heidelberg, 1999, pp. 195-285.
[13] P. Janhunen, A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys. 160 (2) (2000) 649-661, https://doi.org/10.1006/jcph.2000.6479.
[14] B. Sjögreen, H.C. Yee, D. Kotov, Skew-symmetric splitting and stability of high order central schemes, J. Phys. Conf. Ser. 837 (2017) 012019, https:// doi.org/10.1088/1742-6596/837/1/012019.
[15] B. Marder, A method for incorporating Gauss' law into electromagnetic PIC codes, J. Comput. Phys. 68 (1) (1987) 48-55, https://doi.org/10.1016/00219991(87)90043-X.
[16] A.L. Zachary, A. Malagoli, P. Colella, A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput. 15 (2) (1994) 263-284, https://doi.org/10.1137/0915019.
[17] D.S. Balsara, Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. Suppl. Ser. 116 (1) (1998) 133-153, https://doi.org/10.1086/313093.
[18] R.K. Crockett, P. Colella, R.T. Fisher, R.I. Klein, C.F. McKee, An unsplit, cell-centered Godunov method for ideal MHD, J. Comput. Phys. 203 (2005) 422-448, https://doi.org/10.1016/j.jcp.2004.08.021.
[19] C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows - a constrained transport method, Astrophys. J. 332 (1988) 659-677, https://doi.org/ 10.1086/166684.
[20] D.S. Balsara, D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys. 149 (2) (1999) 270-292, https://doi.org/10.1006/jcph.1998.6153.
[21] G. Tóth, The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys. 161 (2) (2000) 605-652, https://doi.org/10.1006/ jcph.2000.6519.
[22] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag. 14 (3) (1966) 302-307, https://doi.org/10.1109/TAP.1966.1138693. 4.4 Publication III 466 D. Derigs et al. / Journal of Computational Physics 364 (2018) 420-467
[23] D.S. Balsara, J. Kim, A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics, Astrophys. J. 602 (2004) 1079-1090, https://doi.org/10.1086/381051.
[24] K. Waagan, A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics, J. Comput. Phys. 228 (23) (2009) 8609-8626, https://doi.org/10.1016/ j.jcp.2009.08.020.
[25] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U. Voß, Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys. 161 (2) (2000) 484-511, https://doi.org/10.1006/jcph.2000.6507.
[26] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys. 175 (2) (2002) 645-673, https://doi.org/10.1006/jcph.2001.6961.
[27] T.S. Tricco, D.J. Price, Constrained hyperbolic divergence cleaning for smoothed particle magnetohydrodynamics, J. Comput. Phys. 231 (21) (2012) 7214-7236, https://doi.org/10.1016/j.jcp.2012.06.039.
[28] M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75 (2) (1988) 400-422, https:// doi.org/10.1016/0021-9991(88)90120-9.
[29] P. Cargo, G. Gallice, Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws, J. Comput. Phys. 136 (2) (1997) 446-466, https://doi.org/10.1006/jcph.1997.5773.
[30] X. Feng, M. Zhang, A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation, Front. Astron. Space Sci. 3 (2016) 6, https://doi.org/10.3389/fspas.2016.00006.
[31] S. Walch, P. Girichidis, T. Naab, A. Gatto, S.C.O. Glover, R. Wünsch, R.S. Klessen, P.C. Clark, T. Peters, D. Derigs, C. Baczynski, The SILCC (SImulating the LifeCycle of molecular Clouds) project - I. Chemical evolution of the supernova-driven ISM, Mon. Not. R. Astron. Soc. 454 (1) (2015) 238-268, https:// doi.org/10.1093/mnras/stv1975.
[32] M. Bohm, R.W. Winters, D. Derigs, G.J. Gassner, S. Walch, J. Saur, An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations: continuous analysis and GLM divergence cleaning, submitted to Comput. Fluids, arXiv:1711.05576.
[33] E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comput. 43 (168) (1984) 369-381, https:// doi.org/10.2307/2008282.
[34] T. Barth, On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in: Compatible Spatial Discretizations, Springer, 2006, pp. 69-88.
[35] M.O. Domingues, A.K.F. Gomes, S.M. Gomes, O. Mendes, B. Di Pierro, K. Schneider, Extended generalized Lagrangian multipliers for magnetohydrody namics using adaptive multiresolution methods, ESAIM Proc. 43 (2013) 95-107, https://doi.org/10.1051/proc/201343006.
[36] A. Mignone, P. Tzeferacos, G. Bodo, High-order conservative finite difference GLM-MHD schemes for cell-centered MHD, J. Comput. Phys. 229 (2010) 5896-5920, https://doi.org/10.1016/j.jcp.2010.04.013, arXiv:1001.2832.
[37] R.-L. Jiang, C. Fang, P.-F. Chen, A new MHD code with adaptive mesh refinement and parallelization for astrophysics, Comput. Phys. Commun. 183 (8) (2012) 1617-1633, https://doi.org/10.1016/j.cpc.2012.02.030, arXiv:1204.5849.
[38] J. Mackey, A.J. Lim, Effects of magnetic fields on photoionized pillars and globules, Mon. Not. R. Astron. Soc. 412 (3) (2011) 2079-2094, https:// doi.org/10.1111/j.1365-2966.2010.18043.x.
[39] T.S. Tricco, D.J. Price, M.R. Bate, Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds, J. Comput. Phys. 322 (2016) 326-344, https://doi.org/10.1016/j.jcp.2016.06.053.
[40] P. Chandrashekar, C. Klingenberg, Entropy stable finite volume scheme for ideal compressible MHD on 2-d cartesian meshes, SIAM J. Numer. Anal. 54 (2) (2016) 1313-1340, https://doi.org/10.1137/15M1013626.
[41] F. Ismail, P.L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys. 228 (15) (2009) 5410-5436, https://doi.org/10.1016/j.jcp.2009.04.021.
[42] P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys. 14 (2013) 1252-1286, https://doi.org/10.4208/cicp.170712.010313a.
[43] D. Derigs, A.R. Winters, G.J. Gassner, S. Walch, A novel averaging technique for discrete entropy stable dissipation operators for ideal MHD, J. Comput. Phys. 330 (2016) 624-632, https://doi.org/10.1016/j.jcp.2016.10.055.
[44] A.R. Winters, D. Derigs, G.J. Gassner, S. Walch, A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, J. Comput. Phys. 332 (2017) 274-289, https://doi.org/10.1016/j.jcp.2016.12.006.
[45] S. Mishra, Entropy stable high-order schemes for systems of conservation laws, in: Modern Techniques in the Numerical Solution of Partial Differential Equations, 2011.
[46] V.V. Rusanov, The calculation of the interaction of non-stationary shock waves with barriers, Ž. Vyčisl. Mat. Mat. Fiz. 1 (1961) 267-279, https:// doi.org/10.1016/0041-5553(62)90062-9.
[47] M. Wesenberg, Efficient Finite-Volume Schemes for Magnetohydrodynamic Simulations in Solar Physics, dissertation, Universität Freiburg, 2003, https:// www.freidok.uni-freiburg.de/data/792.
[48] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (1) (2001) 89-112, https://doi.org/ 10.1137/S003614450036757X.
[49] D. Derigs, G.J. Gassner, S. Walch, R.W. Winters, Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics, submitted to Jahresber. Dtsch. Math.-Ver., arXiv:1708.03537.
[50] P.G. LeFloch, J.M. Mercier, C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal. 40 (5) (2002) 1968-1992, https://doi.org/10.1137/S003614290240069X.
[51] U.S. Fjordholm, S. Mishra, E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal. 50 (2) (2012) 544-573, https://doi.org/10.1137/110836961.
[52] B. Schmidtmann, B. Seibold, M. Torrilhon, Relations between WENO3 and third-order limiting in finite volume methods, J. Sci. Comput., https:// doi.org/10.1007/s10915-015-0151-z.
[53] D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 228 (4) (2009) 952-975, https:// doi.org/10.1016/j.jcp.2008.08.026.
[54] S.A. Orszag, C.-M. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech. 90 (01) (1979) 129-143, https:// doi.org/10.1017/s002211207900210x.
[55] J. Balbás, E. Tadmor, A central differencing simulation of the Orszag Tang vortex system, IEEE Trans. Plasma Sci. 33 (2005) 470-471, https://doi.org/10. 1109/TPS.2005.845282.
[56] W. Dai, P.R. Woodward, A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. Comput. Phys. 142 (2) (1998) 331-369, https://doi.org/10.1006/jcph.1998.5944.
[57] P. Londrillo, L. Del Zanna, High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J. 530 (2000) 508-524, https://doi.org/ 10.1086/308344, arXiv:astro-ph/9910086.
[58] D. Ryu, T.W. Jones, A. Frank, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multidimensional flow, Astrophys. J. 452 (1995) 785, https://doi.org/10.1086/176347, arXiv:astro-ph/9505073.
[59] J.N. Lyness, C.B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal. 4 (2) (1967) 202-210, https://doi.org/10.1137/0704019. Publications D. Derigs et al. / Journal of Computational Physics 364 (2018) 420-467 467
[60] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 2009.
[61] G.A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1) (1978) 1-31.
[62] S. Osher, Riemann solvers, the entropy condition, and difference, SIAM J. Numer. Anal. 21 (2) (1984) 217-235.
[63] P.L. Roe, D.S. Balsara, Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math. 56 (1) (1996) 57-67, https://doi.org/10.1137/ S003613999427084X. 4.5 Further publications 4.5 Further publications not included in this thesis Bohm, M., Winters, A. R., Gassner, G. J., Derigs, D., Hindenlang, F., Saur, J., (Feb. 2018). “An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and Numerical Verification.” In: Journal of Computational Physics (in press). issn: 0021-9991. doi: 10.1016/j.jcp.2018.06.027. arXiv: 1802.07341. Derigs, D., Labadie, L., Ghosh, D. S., Abel-Tibérini, L., (July 2014). “A novel high-contrast imaging technique based on optical tunneling to search for faint companions around bright stars at the limit of diffraction.” In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation. Vol. 9151. Proceed |