Derigs, Dominik ORCID: 0000-0002-9687-2035 (2018). Ideal GLM-MHD - a new mathematical model for simulating astrophysical plasmas. PhD thesis, Universität zu Köln.

[img]
Preview
PDF
Derigs_fonts_embedded_no_Acknowledgements.pdf - Published Version

Download (20MB) | Preview

Abstract

Magnetic fields are ubiquitous in space. As there is strong evidence that magnetic fields play an important role in a variety of astrophysical processes, they should not be neglected recklessly. However, analytic models in astrophysical either do often not take magnetic fields into account or can do this after limiting simplifications reducing their overall predictive power. Therefore, computational astrophysics has evolved as a modern field of research using sophisticated computer simulations to gain insight into physical processes. The ideal MHD equations, which are the most often used basis for simulating magnetized plasmas, have two critical drawbacks: Firstly, they do not limit the growth of numerically caused magnetic monopoles, and, secondly, most numerical schemes built from the ideal MHD equations are not conformable with thermodynamics. In my work, at the interplay of math and physics, I developed and presented the first thermodynamically consistent model with effective inbuilt divergence cleaning. My new Galilean-invariant model is suitable for simulating magnetized plasmas under extreme conditions as those typically encountered in astrophysical scenarios. The new model is called the "ideal GLM-MHD" equations and supports nine wave solutions. The accuracy and robustness of my numerical implementation are demonstrated with a number of tests, including comparisons to other schemes available within in the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH. A possible astrophysical application scenario is discussed in detail.

Item Type: Thesis (PhD thesis)
Translated title:
TitleLanguage
Ideale GLM-MHD - ein neues mathematisches Modell zur Beschreibung astrophysikalischer PlasmenGerman
Translated abstract:
AbstractLanguage
Magnetfelder sind in der Astrophysik allgegenwärtig. Aufgrund vielfältiger Hinweise, dass sie in einer großen Zahl von astrophysikalischen Prozessen eine dominante Rolle einnehmen können, sollten ihre Auswirkungen nicht leichtfertig vernachlässigt werden. Analytische Modelle berücksichtigen hingegen oftmals keine Magnetfelder oder nur unter starker Modellvereinfachung, die dann jedoch ihre Aussagefähigkeit deutlich reduzieren kann. Aufgrund dessen hat sich die Computerphysik als modernes Forschungsgebiet entwickelt. Mithilfe hochentwickelter Simulationen komplexer numerischer Modelle gewinnt sie Einblicke in ansonsten nicht zugängliche physikalische Prozesse. Das am häufigsten verwendete Modell zur Simulation von Plasma, die idealen MHD-Gleichungen, hat zwei entscheidende Nachteile: Es begrenzt weder das Wachstum von numerisch verursachten magnetischen Monopolen, noch sind die meisten auf ihr basierenden numerischen Schema konform mit den Gesetzen der Thermodynamik, speziell dem zweiten Hauptsatz. In meiner Arbeit, die ich interdisziplinär zwischen Mathematik und theoretischer Physik durchgeführt habe, entwickelte ich das erste thermodynamisch konsistente Modell mit wirkungsvoller eingebauter Korrektur von Divergenzfehlern in magnetischen Feldern. Mein neues Galilei-invariante Modell eignet sich für die Simulation magnetisierter Plasmen unter extremen Bedingungen wie sie typischerweise in astrophysikalischen Szenarien auftreten. Es wird als die "idealen GLM-MHD Gleichungen" bezeichnet und beschreibt neun charakteristische Plasmawellen. Die Genauigkeit und Robustheit meines Verfahrens wird anhand einer Reihe von Tests mithilfe des adaptiven Multi-Physik Simulationscode FLASH demonstriert. Ein astrophysikalisches Anwendungsszenario wird ausführlich diskutiert.German
Creators:
CreatorsEmailORCID
Derigs, Dominikderigs@ph1.uni-koeln.deorcid.org/0000-0002-9687-2035
URN: urn:nbn:de:hbz:38-84427
DOI: 10.18716/kups.8442
Subjects: Mathematics
Physics
Uncontrolled Keywords:
KeywordsLanguage
Ideal GLM-MHDEnglish
Entropy stabilityEnglish
Entropy consistencyEnglish
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > I. Physikalisches Institut
Language: English
Date: 14 September 2018
Date of oral exam: 14 September 2018
Referee:
NameAcademic Title
Walch-Gassner, StefanieProf. Dr.
Trebst, SimonProf. Dr.
Funders: Sonderforschungsbereich 956 "Conditions and Impact of Star Formation", Bonn-Cologne Gradate School of Physics and Astronomy
References: [1] J.U. Brackbill, D.C. Barnes, The effect of nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys. 35 (3) (1980) 426-430, https://doi.org/10.1016/0021-9991(80)90079-0. [2] D. Derigs, A.R. Winters, G.J. Gassner, S. Walch, A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure, J. Comput. Phys. 317 (2016) 223-256, https://doi.org/10.1016/j.jcp.2016.04.048. [3] A.R. Winters, G.J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys. 304 (2016) 72-108, https://doi.org/10.1016/j.jcp.2015.09.055. [4] U.S. Fjordholm, S. Mishra, E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys. 230 (14) (2011) 5587-5609, https://doi.org/10.1016/j.jcp.2011.03.042. [5] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput. 49 (179) (1987) 91-103, https:// doi.org/10.2307/2008251. [6] S. Godunov, Symmetric form of the equations of magnetohydrodynamics, Numer. Methods Mech. Contin. Medium 1 (1972) 26-34. [7] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys. 154 (2) (1999) 284-309, https://doi.org/10.1006/jcph.1999.6299. [8] P.A.M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc., Math. Phys. Eng. Sci. 133 (821) (1931) 60-72, https://doi.org/10.1098/ rspa.1931.0130. [9] J.D. Jackson, C. Witte, K. Muller, Klassische Elektrodynamik, (Überarbeitete Auflage) (German Edition), 4th edition, Walter de Gruyter, 2006. [10] F. Moulin, Magnetic monopoles and Lorentz force, Nuovo Cimento B 116 (2001) 869, arXiv:math-ph/0203043. [11] G.I. Ogilvie, Lecture notes: astrophysical fluid dynamics, ArXiv e-prints arXiv:1604.03835. [12] T.J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in: D. Kröner, M. Ohlberger, C. Rohde (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, in: Lect. Notes Comput. Sci. Eng., vol. 5, Springer Berlin Heidelberg, 1999, pp. 195-285. [13] P. Janhunen, A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys. 160 (2) (2000) 649-661, https://doi.org/10.1006/jcph.2000.6479. [14] B. Sjögreen, H.C. Yee, D. Kotov, Skew-symmetric splitting and stability of high order central schemes, J. Phys. Conf. Ser. 837 (2017) 012019, https:// doi.org/10.1088/1742-6596/837/1/012019. [15] B. Marder, A method for incorporating Gauss' law into electromagnetic PIC codes, J. Comput. Phys. 68 (1) (1987) 48-55, https://doi.org/10.1016/00219991(87)90043-X. [16] A.L. Zachary, A. Malagoli, P. Colella, A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput. 15 (2) (1994) 263-284, https://doi.org/10.1137/0915019. [17] D.S. Balsara, Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. Suppl. Ser. 116 (1) (1998) 133-153, https://doi.org/10.1086/313093. [18] R.K. Crockett, P. Colella, R.T. Fisher, R.I. Klein, C.F. McKee, An unsplit, cell-centered Godunov method for ideal MHD, J. Comput. Phys. 203 (2005) 422-448, https://doi.org/10.1016/j.jcp.2004.08.021. [19] C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows - a constrained transport method, Astrophys. J. 332 (1988) 659-677, https://doi.org/ 10.1086/166684. [20] D.S. Balsara, D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys. 149 (2) (1999) 270-292, https://doi.org/10.1006/jcph.1998.6153. [21] G. Tóth, The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys. 161 (2) (2000) 605-652, https://doi.org/10.1006/ jcph.2000.6519. [22] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag. 14 (3) (1966) 302-307, https://doi.org/10.1109/TAP.1966.1138693. 4.4 Publication III 466 D. Derigs et al. / Journal of Computational Physics 364 (2018) 420-467 [23] D.S. Balsara, J. Kim, A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics, Astrophys. J. 602 (2004) 1079-1090, https://doi.org/10.1086/381051. [24] K. Waagan, A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics, J. Comput. Phys. 228 (23) (2009) 8609-8626, https://doi.org/10.1016/ j.jcp.2009.08.020. [25] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U. Voß, Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys. 161 (2) (2000) 484-511, https://doi.org/10.1006/jcph.2000.6507. [26] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys. 175 (2) (2002) 645-673, https://doi.org/10.1006/jcph.2001.6961. [27] T.S. Tricco, D.J. Price, Constrained hyperbolic divergence cleaning for smoothed particle magnetohydrodynamics, J. Comput. Phys. 231 (21) (2012) 7214-7236, https://doi.org/10.1016/j.jcp.2012.06.039. [28] M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75 (2) (1988) 400-422, https:// doi.org/10.1016/0021-9991(88)90120-9. [29] P. Cargo, G. Gallice, Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws, J. Comput. Phys. 136 (2) (1997) 446-466, https://doi.org/10.1006/jcph.1997.5773. [30] X. Feng, M. Zhang, A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation, Front. Astron. Space Sci. 3 (2016) 6, https://doi.org/10.3389/fspas.2016.00006. [31] S. Walch, P. Girichidis, T. Naab, A. Gatto, S.C.O. Glover, R. Wünsch, R.S. Klessen, P.C. Clark, T. Peters, D. Derigs, C. Baczynski, The SILCC (SImulating the LifeCycle of molecular Clouds) project - I. Chemical evolution of the supernova-driven ISM, Mon. Not. R. Astron. Soc. 454 (1) (2015) 238-268, https:// doi.org/10.1093/mnras/stv1975. [32] M. Bohm, R.W. Winters, D. Derigs, G.J. Gassner, S. Walch, J. Saur, An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations: continuous analysis and GLM divergence cleaning, submitted to Comput. Fluids, arXiv:1711.05576. [33] E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comput. 43 (168) (1984) 369-381, https:// doi.org/10.2307/2008282. [34] T. Barth, On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in: Compatible Spatial Discretizations, Springer, 2006, pp. 69-88. [35] M.O. Domingues, A.K.F. Gomes, S.M. Gomes, O. Mendes, B. Di Pierro, K. Schneider, Extended generalized Lagrangian multipliers for magnetohydrody namics using adaptive multiresolution methods, ESAIM Proc. 43 (2013) 95-107, https://doi.org/10.1051/proc/201343006. [36] A. Mignone, P. Tzeferacos, G. Bodo, High-order conservative finite difference GLM-MHD schemes for cell-centered MHD, J. Comput. Phys. 229 (2010) 5896-5920, https://doi.org/10.1016/j.jcp.2010.04.013, arXiv:1001.2832. [37] R.-L. Jiang, C. Fang, P.-F. Chen, A new MHD code with adaptive mesh refinement and parallelization for astrophysics, Comput. Phys. Commun. 183 (8) (2012) 1617-1633, https://doi.org/10.1016/j.cpc.2012.02.030, arXiv:1204.5849. [38] J. Mackey, A.J. Lim, Effects of magnetic fields on photoionized pillars and globules, Mon. Not. R. Astron. Soc. 412 (3) (2011) 2079-2094, https:// doi.org/10.1111/j.1365-2966.2010.18043.x. [39] T.S. Tricco, D.J. Price, M.R. Bate, Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds, J. Comput. Phys. 322 (2016) 326-344, https://doi.org/10.1016/j.jcp.2016.06.053. [40] P. Chandrashekar, C. Klingenberg, Entropy stable finite volume scheme for ideal compressible MHD on 2-d cartesian meshes, SIAM J. Numer. Anal. 54 (2) (2016) 1313-1340, https://doi.org/10.1137/15M1013626. [41] F. Ismail, P.L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys. 228 (15) (2009) 5410-5436, https://doi.org/10.1016/j.jcp.2009.04.021. [42] P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys. 14 (2013) 1252-1286, https://doi.org/10.4208/cicp.170712.010313a. [43] D. Derigs, A.R. Winters, G.J. Gassner, S. Walch, A novel averaging technique for discrete entropy stable dissipation operators for ideal MHD, J. Comput. Phys. 330 (2016) 624-632, https://doi.org/10.1016/j.jcp.2016.10.055. [44] A.R. Winters, D. Derigs, G.J. Gassner, S. Walch, A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, J. Comput. Phys. 332 (2017) 274-289, https://doi.org/10.1016/j.jcp.2016.12.006. [45] S. Mishra, Entropy stable high-order schemes for systems of conservation laws, in: Modern Techniques in the Numerical Solution of Partial Differential Equations, 2011. [46] V.V. Rusanov, The calculation of the interaction of non-stationary shock waves with barriers, Ž. Vyčisl. Mat. Mat. Fiz. 1 (1961) 267-279, https:// doi.org/10.1016/0041-5553(62)90062-9. [47] M. Wesenberg, Efficient Finite-Volume Schemes for Magnetohydrodynamic Simulations in Solar Physics, dissertation, Universität Freiburg, 2003, https:// www.freidok.uni-freiburg.de/data/792. [48] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (1) (2001) 89-112, https://doi.org/ 10.1137/S003614450036757X. [49] D. Derigs, G.J. Gassner, S. Walch, R.W. Winters, Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics, submitted to Jahresber. Dtsch. Math.-Ver., arXiv:1708.03537. [50] P.G. LeFloch, J.M. Mercier, C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal. 40 (5) (2002) 1968-1992, https://doi.org/10.1137/S003614290240069X. [51] U.S. Fjordholm, S. Mishra, E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal. 50 (2) (2012) 544-573, https://doi.org/10.1137/110836961. [52] B. Schmidtmann, B. Seibold, M. Torrilhon, Relations between WENO3 and third-order limiting in finite volume methods, J. Sci. Comput., https:// doi.org/10.1007/s10915-015-0151-z. [53] D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 228 (4) (2009) 952-975, https:// doi.org/10.1016/j.jcp.2008.08.026. [54] S.A. Orszag, C.-M. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech. 90 (01) (1979) 129-143, https:// doi.org/10.1017/s002211207900210x. [55] J. Balbás, E. Tadmor, A central differencing simulation of the Orszag Tang vortex system, IEEE Trans. Plasma Sci. 33 (2005) 470-471, https://doi.org/10. 1109/TPS.2005.845282. [56] W. Dai, P.R. Woodward, A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. Comput. Phys. 142 (2) (1998) 331-369, https://doi.org/10.1006/jcph.1998.5944. [57] P. Londrillo, L. Del Zanna, High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J. 530 (2000) 508-524, https://doi.org/ 10.1086/308344, arXiv:astro-ph/9910086. [58] D. Ryu, T.W. Jones, A. Frank, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multidimensional flow, Astrophys. J. 452 (1995) 785, https://doi.org/10.1086/176347, arXiv:astro-ph/9505073. [59] J.N. Lyness, C.B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal. 4 (2) (1967) 202-210, https://doi.org/10.1137/0704019. Publications D. Derigs et al. / Journal of Computational Physics 364 (2018) 420-467 467 [60] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 2009. [61] G.A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1) (1978) 1-31. [62] S. Osher, Riemann solvers, the entropy condition, and difference, SIAM J. Numer. Anal. 21 (2) (1984) 217-235. [63] P.L. Roe, D.S. Balsara, Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math. 56 (1) (1996) 57-67, https://doi.org/10.1137/ S003613999427084X. 4.5 Further publications 4.5 Further publications not included in this thesis Bohm, M., Winters, A. R., Gassner, G. J., Derigs, D., Hindenlang, F., Saur, J., (Feb. 2018). “An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and Numerical Verification.” In: Journal of Computational Physics (in press). issn: 0021-9991. doi: 10.1016/j.jcp.2018.06.027. arXiv: 1802.07341. Derigs, D., Labadie, L., Ghosh, D. S., Abel-Tibérini, L., (July 2014). “A novel high-contrast imaging technique based on optical tunneling to search for faint companions around bright stars at the limit of diffraction.” In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation. Vol. 9151. Proceed
Place of Publication: Köln
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/8442

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item