Up a level |
Grimm, Viktor ORCID: 0000-0001-5300-3705, Heinlein, Alexander ORCID: 0000-0003-1578-8104 and Klawonn, Axel ORCID: 0000-0003-4765-7387 (2022). A short note on solving partial differential equations using convolutional neural networks. Technical Report.
Balzani, Daniel ORCID: 0000-0002-1422-4262, Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Rheinbach, Oliver ORCID: 0000-0002-9310-8533 and Schröder, Jörg (2022). Comparison of Arterial Wall Models in Fluid-Structure Interaction Simulations. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387 and Lanser, Martin ORCID: 0000-0002-4232-9395 (2021). Adaptive Nonlinear Domain Decomposition Methods. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Lanser, Martin and Weber, Janine (2021). Predicting the geometric location of critical edges in adaptive GDSW overlapping domain decomposition methods using deep learning. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Perego, Mauro and Rajamanickam, Sivasankaran (2021). FROSch Preconditioners for Land Ice Simulations of Greenland and Antarctica. Technical Report.
Eichinger, Matthias, Heinlein, Alexander ORCID: 0000-0003-1578-8104 and Klawonn, Axel ORCID: 0000-0003-4765-7387 (2020). Surrogate Convolutional Neural Network Models for Steady Computational Fluid Dynamics Simulations. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Lanser, Martin and Weber, Janine (2020). Combining Machine Learning and Domain Decomposition Methods – A Review. Technical Report.
Grimm, Viktor, Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Lanser, Martin and Weber, Janine (2020). Estimating the time-dependent contact rate of SIR and SEIR models in mathematical epidemiology using physics-informed neural networks. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Knepper, Jascha ORCID: 0000-0002-8769-2235, Rheinbach, Oliver and Widlund, Olof B. (2020). Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Lanser, Martin and Weber, Janine (2020). Combining Machine Learning and Adaptive Coarse Spaces - A Hybrid Approach for Robust FETI-DP Methods in Three Dimensions. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Hochmuth, Christian and Klawonn, Axel ORCID: 0000-0003-4765-7387 (2019). Fully algebraic two-level overlapping Schwarz preconditioners for elasticity problems. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Lanser, Martin and Weber, Janine (2019). Machine Learning in Adaptive FETI-DP - Reducing the Effort in Sampling. Technical Report.
Eichinger, Matthias, Heinlein, Alexander ORCID: 0000-0003-1578-8104 and Klawonn, Axel ORCID: 0000-0003-4765-7387 (2019). Stationary flow predictions using convolutional neural networks. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Lanser, Martin and Weber, Janine (2019). A Frugal FETI-DP and BDDC Coarse Space for Heterogeneous Problems. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104 and Lanser, Martin (2019). Additive and Hybrid Nonlinear Two-Level Schwarz Methods and Energy Minimizing Coarse Spaces for Unstructured Grids. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Rheinbach, Oliver, Röver, Friederike, Sandfeld, Stefan and Steinberger, Dominik (2019). Applying the FROSch Overlapping Schwarz Preconditioner for Dislocation Mechanics in Deal.II. Technical Report.
Heinlein, Alexander ORCID: 0000-0003-1578-8104, Hochmuth, Christian and Klawonn, Axel ORCID: 0000-0003-4765-7387 (2019). Reduced Dimension GDSW Coarse Spaces for Monolithic Schwarz Domain Decomposition Methods for Incompressible Fluid Flow Problems. Technical Report.